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Abstract
Sacrificing storage space for traversal flexibility can
be achieved by using a half-edge data structure. In
this technical report the half-edge is described and
implemented, along with several useful algorithms:
how to traverse neighboring vertices and faces using
half-edges, and how to calculate the vertex normal.
Additionally, we describe how the mesh area, vol-
ume, curvature, shell and genus can be calculated.
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1 Problem and Motivation
Polygonal meshes are usually represented by using
sets of vertices, edges and faces. For rendering the
mesh it’s usually enough with a “polygon soup”, in
which little, or no, connectivity is explicitly stored.

However, when attempting to manipulate or find
certain properties of the mesh then it’s increasingly
inefficient. Finding neighboring vertices requires a
linear traversal in edges for each vertex, O(|V | · |E|).
Sacrificing storage space for traversal flexibility

can be achieved by using a half-edge data structure.
It provides O(1) access to vertices, edges and face
for a triangle, and convenient access to its neighbors.

Decreasing complexity by an order of magnitude
allows faster inspection and manipulation of meshes.
This report describes several useful algorithms for
finding the properties of a mesh by using half-edges.

2 Background and Theory
The half-edge data structure was introduced by
Muller and Preparata [2] in 1978 to make traversal
through a mesh more time efficient and convenient.
It works by maintaining the next and previous edges
for a given edge of a triangle, giving full edge/vertex
access inside a triangle. For traversing to another
triangle, there is the pair edge, which is “parallel”
to the current edge, since it has been split in two.
See Figure 1 for a graphical representation of these.
Finding neighboring vertices and faces to a

vertex is a useful operation, and is used in many of
the algorithms described here. By using a half-edge
of vi → e(vi), we can find the next edge connected
to vi with pair(next(next(e(vi)))) giving vertex vj .
All neighbor elements of vi are called the one-ring.
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Figure 1: a half-edge data structure in a nutshell.
All of the above data are relative to the gray vertex.
Only the non-dashed elements are accessed directly;
the rest of the mesh can be traversed using the pairs.

Estimating the normal of a vertex is essential
when one renders using Gouraud or Phong shading.
Doing this is quite straightforward, the normal of
a vertex vi is the sum of the face normals in the
one-ring of vi, thereafter normalized accordingly as:

n̂(vi) =
∑

f∈Nf
i

fn̂ ÷ ||
∑

f∈Nf
i

fn̂|| ,

where fn̂ is the unit normal of the face f in the Nf
i .

See Figure 2 for how to calculate fn̂ for an given f .
Another handy property is the area of a mesh,

which is useful in itself and used in other algorithms.
Since our mesh is piecewise flat, and we only want an
approximation, we can use a Riemann summation:

A =

∫
S

dA ≈
∑
f∈F

Af =
1

2
||
∑
f∈F

~uf × ~vf || ,

where ~uf and ~vf are two vectors which connect to
the same vertex vi. The length ||~uf×~vf || is the area
of the parallelogram, of which half is the triangle f .

It’s trickier to calculate the volume of a mesh,
but assuming the mesh is a closed manifold, we use
the divergence theorem which relate area to volume:

3V =

∫
V

∇ · F dτ =

∫
S

F · n̂ dA

≈
∑
f∈F

(~v1 + ~v2 + ~v3)

3
· fn̂Af ,

Figure 2: depiction of the one-ring neighborhood of
vi containing Nv

i = {vj , vk, vl, vm}. Normals of each
triangle f are calculated by forming vectors from vi
for each vk, vl ∈ Nv

i in it, and thereafter: −−→vivk×−−→vivl.

where the vector field F = (x, y, z), and the volume
is approximated by using a Riemann sum over faces.
An important property is the mesh curvature,

which has many applications, e.g. mesh saliency [1]
measure, used for finding the importance of a region.
There are two measures of curvature in 3-D space, a
mean curvature, and the Gaussian curvature:

H = (κ1 + κ2)÷ 2 and the K = κ1κ2 ,

where κ1 and κ2 are the principal curvatures at P .
Each κi describes the smoothness at P , and is in-
versely proportional to an osculating circle’s radius.
We express H and K in terms of angles around Nv

i :

K =
1

A

(
2π −

∑
k∈Nv

i

θk

)
,

where θk is in radians and adjacent to −−→vivk, vk ∈ Nv
i .

Hn̂ =
1

4ANf
i

∑
k∈Nv

i

(cotαk + cotβk)
−−→vivk

Lastly, finding the number of shells and genus of
a mesh is done using Euler-Poincaré’s characteristic:

G = (−V + E − F + 2S)÷ 2,

assuming S = 1 then G = (−V +E−F )÷2. For fur-
ther details on genus and topology, see Shene’s [3].
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3 Method and Results

Implementing said data structures and algorithms
is quite straightforward, but certain parts are still
unclear, e.g.: how do we find the number of shells?

Here follows shortly how these were implemented,
the generated results, and some discussion on them.

3.1 Creating a Half-Edge Mesh

Represented in HalfEdgeMesh using three lists:
the half-edge list, vertex list and also a face list. It
stores next, previous, pair pointers in each half-edge,
and keeps a half-edge pointer in each vertex or face.

Adding a new face is done with AddFace, which
takes the three vertices which compose one triangle.
First, the three vertices are added to the vertex list,
if they don’t already exist. Thereafter we create
the half-edges for these vertices, and remember to
connect the “inner triangle” in a counter-clockwise
fashion as shown in Figure 1. What about the outer
edges you might wonder? The trick is to realise that
these will eventually be connected later, assuming
we have a closed mesh (the only case we will handle).

Finally, the vertices and faces are given pointers
to their half-edges, since we usually specify algo-
rithms which work in vertices or faces, rarely edges.
Another property which should be initialized when
adding a face is the face’s normal. This is done sim-
ply by using the three vertices which were given,
v1, v2, v3, and then just calculating ||−−→v1v2 ×−−→v1v3||.

After some fiddling, the complete mesh should be
initialized, and fully connected both globally and
locally (via the next, prev and pair pointers). When
one renders it, in the same way as a “polygon soup”,
the reader should have a nice looking polygon cow:

3.2 Accessing Neighboring Faces
Now that the mesh is easier to traverse by using a
half-edge data structure, the elemental operation of
finding all triangles connected to a vertex is desired.
We do this by calling FindNeighboringFaces,
which, given a vertex vi, returns an ordered list of
faces (f1, f2, ..., fn) which share the same vertex vi.

Since we know an initial edge e(vi) which has vi,
and each half-edge stores a pointer to its face, the
base-case is trivial: f1 = face(e(vi)). In general, we
need to find the next half-edge which has an unique
face by traversing the one-ring around vi. The next
edge ek is found with: ek = pair(next(next(e(vk))))
which will always give the next face fk = face(ek).
Append fk to the list until we have looped around
the one-ring, in other words, when a face fk+1 = f1.

3.3 Finding the Vertex’s Normal
Our first application of these neighboring faces is
to find the normal of a vertex. Since we know that
the faces f1, f2, ..., fn are around the vertex vi, and
that each face fk has a face normal n̂(fk), which
was pre-computed by taking ||−−→v1v2 × −−→v1v3|| of the
vertices for fk, we get the mean normal around vi:

n̂(vi) =
∑

fk∈Nf
i

n̂(fk)÷ ||
∑

fk∈Nf
i

n̂(fk)||

Applying this to our polygon cow for demonstration
purposes, we get the piñata polygon cow below. In
this case, the red lines are the face normals and
the green lines our calculated vertex normals. It’s
important to note that the vertex normal is heavily
dependent on the placement of the triangles, e.g. a
cube will gravitate towards a certain side if uneven.
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3.4 Calculating Area of Mesh
As previously described, we calculate the area of
a mesh by summing up the individual piece-wise
flat areas (triangles in this case). How is the area
Af of a face f calculated, given it’s composed of
triangles? We already have the list of faces F , and
therefore can pick one fi ∈ F . We can also find the
three vertices associated with the face fi by using
the half-edges ei = edge(fi), next(ei) and prev(ei),
then accessing vert(ek) for every edge: {v1, v2, v2}.

Finally, we find the area of the parallelogram with
||−−→v1v2×−−→v1v3||, done for every face fi ∈ F . Since the
parallelogram are two triangles stitched together, a
triangle fi has then a area Afi = ||−−→v1v2×−−→v1v3|| ÷ 2.
The mesh area A is therefore a sum of Afi ,∀fi ∈ F .

Trying this out on 3 spheres composed of triangles
of different radii, we get the results below. We see
the difference between the analytical one isn’t large:

Radius Analytical Area Area of Mesh

0.1 0.12566 0.12511
0.5 3.14159 3.1277
1.0 12.5663 12.5111

3.5 Approximating Volume
Similarly, we want to approximate the mesh volume.
According to the theory presented earlier, we need
to find the centroid of the face, which is simply the
three vertices {v1, v2, v3} for each face fi. Then, the
centroid is: (v1+v2+v3)÷3. We already know how
to find the area Afi of a triangle face fi, and also
the face normal n̂(fi), see the previous definitions.

Computing the volume is then trivial, we simply
calculate (v1 + v2 + v3 ÷ 3) ·Afi n̂(fi) for each face
fi ∈ F , then taking the sum of these. Note however
that the volume we calculated is 3V , and a division
by 3 is required at the end to get the correct result.

Again, trying this out on a sphere with different
radii, we get the results found in the table below.
Notice again that the approximated error isn’t large.

Radius Real Volume Volume of Mesh

0.1 0.00419 0.00415
0.5 0.5236 0.51899
1.0 4.1887 4.15192

3.6 The Mesh Curvature
Since there are two types of curvatures in 3-D, we
describe how to implement each of these, and there-
after proceed to analyze their practical differences.
We start by describing the Gaussian curvature first.

Algorithmically, the Gaussian curvature for a vi
vertex is the difference between 2π and the sum of
all angles between edges in the neighborhood of vi,
times the inverse of the area, 1÷A, as seen before.
An angle θk = cos−1 v̂ · û between −−→vivk and −−−−→vivk+1,
where vk+1 is the next counter-clockwise vertex in
the neighborhood of vi after vk, gives one such angle.
Visualizing the Gaussian curvature can be done

by mapping the interval to a black-white gradient,
and coloring each vertex or face in its respective
curvature map. We have done this for the left figure
below, with a sphere of unit radius. Analytically,
we should have the same color across the surface
since the curvature is inversely proportional to the
osculating sphere’s radius. We see that this isn’t
the case, at least not perfectly. As it turns out, the
way triangles are placed will affect the curvature,
and the Gaussian curvature is more easily swayed
because it multiplies principal curvatures κ1 & κ2.

Now, we attempt to find mean curvature as well.
Since Voronoi area provides a better approximation:

ANf
i
=

1

8

∑
k∈Nv

i

(cotαk + cotβk)||−−→vivk||2 ,

we use it instead of the previous area approxima-
tion. Calculating these angles is similar to how we
handled the Gaussian curvature, but instead of only
picking the next edge we also pick the previous edge.
Finally, calculating the summation for the mean cur-
vature approximation uses basically the same tech-
niques as the Voronoi area, calculating it as before.
Comparing the results, the mean curvature (to

the right) produces less noisy/varied curvature. It
is more in line with the expected analytical results.
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3.7 Shell and Genus

By using the Euler-Poincaré characteristic we can
find out an unknown property if we know the rest.
Since we already have the number of vertices, edges
and faces the remaining ones are shells and genus.
Since finding the genus is problematic, we attempt
to find the number of shells first, and then plug it
into Euler-Poincaré. We describe how to find shells.

Assemble a set VS which is initially VS = V and
pick some vi ∈ VS . Find the neighbors Nv

i of vi
and remove them from VS but add them to a queue
VQ. Pick next vi such that vi ∈ VQ and repeat as
above, until the queue VQ = ∅, then pick another
vi ∈ VS . Each time we pick new vi from VS , it’s a
new shell. Therefore, in a nutshell, we pick a random
vertex and find all possible interconnected neighbors
to it by marking vertices as traversed. This should
lead to all vertices being traversed, if the mesh is
a closed manifold, and the number of shells is one.
Each time this doesn’t happen, and the meshes are
closed manifolds, means that there is more than one
shell, and we mark a new shell as being one that isn’t
completely interconnected (i.e. vertices traversed).
See the example scenario below, our algorithm

gets us S = 4, and we know V,E, F , therefore we
can determine the genus G with Euler-Poincaré. If
you are wondering why the G = 3, see Shene’s [3].

In many cases the genus of a mesh can be seen
as the amount of “holes” in a mesh. For example,
the torus in the scene above has genus one and the
pyramid has genus zero. However, this rule of thumb
doesn’t apply in all cases, for example, the sphere
with seemingly “two holes” actually has a genus one.

Vertices Edges Faces Shells Genus

2013 12066 4022 4 3

Grading
According to the lab guidelines within the course
TNM079, I’ve implemented features for: 3, 4 and 5.
My aim with this assignment is a grade of scale: 5.
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Abstract
Surfaces are usually described using polygon meshes
in computer graphics. Some surfaces may require a
staggering amount of triangles to describe in detail.
A mesh simplification algorithm removes polygons
from a mesh while trying to keep its visual details.
In this technical report we summarize and compare
the quadric-based and absolute curvature-weighted
error metrics, which are used in mesh simplification.
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1 Problem and Motivation
Representing surfaces using polygonal meshes still
remains dominant in the field of computer graphics,
since it’s flexible (e.g. for artists) and fast on GPUs.

However, the increasing demand for high-fidelity
models (e.g. in computer games or 3-D animations)
has caused the number of triangles to skyrocket in
recent years. While rendering such highly detailed
models is possible (even in real-time), it’s a waste of
resources if these details are superfluous, and don’t
impact the final visualization (i.e. render) of a scene.

Instead of re-creating a lower resolution mesh by
hand, we specify a mesh using their full resolution,
and let a mesh simplification/decimation algorithm
reduce the number of triangles for us, up and until a
given threshold. Here we describe such algorithms.

2 Background and Theory
Briefly, mesh simplification attempts to, given some
meshM = (V,F) with vertices V and triangles F ,
find some new meshM′ = (V ′,F ′) such that either:

1. ||M′−M|| is minimal, given a target |V ′| = n;

2. |V ′| is minimal, given threshold ||M′−M|| < ε,

where ||M′−M|| measures an approximation error.
Thus, we attempt to reduceM intoM′ by editing
V →A V ′ and F →A F ′ with our algorithm A, until
we either reach an error threshold ε, alternatively a
vertex threshold n, given as parameters to A. Both
of these can be used as a stopping condition for A.
In this technical report we’ll deal only with (1),

and concentrate on incremental decimation, which
giveM′s’s with reduced vertices in each iteration s.
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Figure 1: (a) edge contraction & (b) pair contraction

Since there are several such algorithms, we’ll only
follow the method due to Garland and Heckbert [1],
called quadric-based mesh decimation. But we’ll do
some variations of it too for comparison purposes,
one which will perform worse (i.e. ||M′ −M|| will
be large), and another which “preserves” curvature.

Before describing the entire algorithm, we’ll show
the general intuition required. Since we are dealing
with an iterative algorithm, the meshM′s at step s
of A will only have been a stepping stone towards
the final meshM′. We reachM′ when the stopping
condition, |V ′| = n, holds for some iteration s in A.
Assuming we have aM with |V| > n, the algorithm
needs to remove vertices fromM to satisfy |V ′| = n.
Essentially, each iteration s our algorithm needs to
remove one vertex from a previousM′s−1, and given
thatM′0 =M, mesh decimationM′n =M′ follows.
We chooseM′s such that ||M′s −M|| is minimized.

Garland and Heckbert [1] describe two methods
for removing one vertex in each iteration. First is
edge contraction, introduced in Hoppe et al. [2]; by
choosing an appropriate edge eji = (vj , vi) we can
collapse (vj , vi) → v̄i by deleting triangles and re-
connecting vj ’s edges to v̄i, shown in Figure 1 (a).
They also present pair contractions, in Figure 1 (b),
which allows a collapse (vj , vi) → v̄i even if they
aren’t connected by an edge, but only limited by t,

Figure 2: depicts a plane fk with normal nk for vi

which constrains the collapse to only ||vj − vi|| < t.
We’ll be using only edge contractions since it’s

easier to implement, but Garland and Heckbert [1]
use pair contractions, which means results may vary.

Now, how does one pick a (vj , vi)→ v̄i such that
||M′s−M|| is minimal in each step? In their paper,
we assign a matrix Qi for each vi which is used to
measure the error ∆(v) = vᵀQiv of vi being moved
to its new position v. The optimal position v̄ for a
contraction can be found by solving ∇∆ = 0 and is
linear since ∆(v) is quadratic. Shown in the paper:

v̄ =


q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
0 0 0 1


−1 

0
0
0
1

 ,

which can be used to find the cost of contracting
the edge (vj , vi)→ v̄i and is ∆(v̄) = v̄ᵀ(Qi +Qj)v̄.
We simply put these costs in a min-heap, and each
iteration s we contract the edge on top of the heap.

Lastly, calculating Qi is done by taking the sum
of quadrics derived from planes which intersect vi.
Finding these planes is simple: we take the faces fk
in the neighborhood Ni of vi which has normal nk.
Therefore Qi =

∑
fk∈Ni

pᵀ
kpk, pk =

[
nk nk · vi

]
.

Hence, we can interpret ∆(v) as the distance from
the planes pk which intersect vi, to the position v.

2



To make things a bit more exciting, we present
two other ∆(v) metrics and heuristics for deciding
the position v̄. These will be used for comparing
and evaluating quadric-based error metrics, seeing
which situations they perform well, and not so much.

Also shown in Garland and Heckbert [1] we have
the simple scheme where v̄ = (vi + vj)÷ 2, that is,
we contract (vi, vj)→ v̄i, such that it’s placed at v̄,
in-between the vertices vi and vj . It also allows for a
very simple cost function which is: ∆(v̄) = ||v̄−vi||.
Intuitively, this should perform worse than quadrics.

Finally, we present an absolute curvature-weighted
error metric, such as the one shown in Li et al. [3],
which builds upon the quadric-based error metrics.
Since humans find high curvature areas on a surface
important (see e.g. mesh saliency), as characteristic
features of the mesh, we should attempt to penalize
removal of vertices which may change the curvature.
We already know from the previous technical report
how to find the mean curvature H and the Gaussian
curvature K for an arbitrary closed manifold mesh.
According to Li et al. [3], we can find the principal
curvatures κ1 and κ2 of some vertex vi using H,K:

κ1 = H +
√
H2 −K ; κ2 = H −

√
H2 −K ,

where the absolute curvature will be κ = |κ1|+ |κ2|.
We then simply use this κ for adding weights for ∆,
where we redefine ∆(v) = κ(vᵀQiv). According to
the results from Li et al. [3], while the error will be
larger for absolute curvature-weighted compared to
quadric-based metrics, it preserves curvature better.

3 Method and Results
Let’s cover the practical details now, on how to build
a mesh simplification algorithm by using the metrics.
We’ll evaluate each result and compare them to each
other using our trusty polygon cow, which shall be
decimated in the name of science (sounds painful).

See the appendix later for images of these results.

3.1 Outlining Mesh Simplification
Briefly speaking an algorithm has these major steps:
(1) select all valid edges for contraction, (2) compute
the contraction cost and position for each such edge,
(3) insert these into a min-heap by contraction cost,
and finally, (4) pick the least-cost contraction in it,
and apply an edge contraction into collapse position.
Rinse and repeat until a stopping condition is true.

Simply using ∆(v̄) = ||v̄− v|| , v̄ = (vi + vj)÷ 2
gives us a simple decimation scheme, which has an
expected “wishy-washy” outcome, seen in Figure 3.
However, we use this “skeleton” with better metrics.

3.2 Quadrics-Based Error Metrics
Afterwards, we describe how quadric error metrics
were integrated into this general algorithm outline.

For computing the contraction cost ∆(v̄) and the
contraction position v̄, we need the quadric Qi for
each vertex vi before doing anything, under s = 0.
Looping through each vertex vi in our vertex list V,
we find all planes pk in the neighborhood Ni of vi.
Since the face fk ∈ Ni is on the plane pk, we just
get the normal nk of fk, which is also normal to pk.
But there are infinite such planes with normal nk,
we need to solve d = −(ax+ by+ cz) for uniqueness.
We do this by fixing pk to some point on fk, e.g. vi.

After this pk =
[
a b c d

]
, and can find pᵀ

kpk.
Since Qi =

∑
pᵀ
kpk, we have found quadrics for vi.

Find the contraction position v̄ as done in Section 2.
Then the contraction cost is ∆(v̄) = v̄ᵀ(Qi +Qj)v̄,
for contracting a valid edge eji = (vj , vi)→ v̄i to v̄.

See Figure 4. Comparing it to Figure 3 we notice
that quadric-based mesh simplification is better at
keeping the meshes overall shape. Notice that legs
have been “thinned” in Figure 3, but not in Figure 4.
Garland and Heckbert [1] mention in their paper that
the errors were reduced by up to 50% with quadrics.

3.3 Absolute Curvature-Weighted
Turns out to be quite a straightforward extension
of quadric-based error metrics, as we only need to
weigh-in the absolute curvature κ into a ∆(v) cost.
Hence we only change ∆(v̄) = κ(v̄ᵀ(Qi + Qj)v̄) in
the quadrics-based approach, the rest is unchanged.

Looking at Figure 5 and comparing it to Figure 4,
we notice some defining areas are evicted in Figure 4,
but kept in Figure 5. For example, the eyes’ details
are still kept by using an absolute curvature metric,
and Figure 6 visually demonstrates why this occurs.
This metric is suitable when curvature is important,
but doesn’t guarantee ||M′ −M|| will be minimal.

Grading
According to the lab guidelines within the course
TNM079, I’ve implemented features for a: 3 and 4.
My aim with this assignment is a grade of scale: 4.
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Figure 3: simple decimation for the cow mesh (50%, 35%, 17% triangles of the original mesh)

Figure 4: quadric-based decimation for the cow mesh (50%, 35%, 17% triangles of original)

Figure 5: absolute curvature-weighted decimation for the cow mesh (50%, 35% and 17%)

Figure 6: mapping of the cost for curvature-weighted decimation in each step
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Abstract
Parametric curves can describe smooth geometry
and motion; important parts in computer graphics.
However, using a high-degree polynomial is both
computationally inefficient and a hassle to specify.
Instead, we use splines, which are stitched together
piecewise polynomial curves. In this article, we de-
scribe the uniform cubic b-spline and its properties.
More specifically, we make use of its local support
to speed up our b-spline evaluations. We then show
how these can equivalently be represented by us-
ing curve subdivision, which iteratively makes the
curve smoother. Finally, we generalize this concept
towards surface subdivision, and present the well-
known Loop subdivision scheme for triangle meshes.
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1 Problem and Motivation

Representing smooth curves and surfaces have been
important achievements within computer graphics;
since they can represent geometry (e.g. font glyphs),
and even motions (e.g. animation paths), smoothly.
Unfortunately, using high-degree polynomials is

not feasible, both computationally and also in terms
of versatility (difficult for artists to control results).
By using a piecewise polynomial function, the spline,
we can model most high-degree polynomials using a
set of “stitched together” lower-degree polynomials.
Leading to low compute cost, and also local control,
enabling artists to modify the curve’s control points:

Figure 1: example quadratic Bézier spline curves.

Here we explain the uniform cubic B-spline only,
and discuss how to evaluate it efficiently by using
a local support property inherent to B-splines. Also,
we show how these can equivalently be represented
by iterative curve subdivision. Finally, we extend
these concepts to B-spline patches (i.e. surfaces) by
iterative surface subdivision using Loop’s algorithm.
Other splines (e.g. Bézier curves) and subdivision
schemes (e.g. Catmull-Clark) won’t be shown here.
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2 Background and Theory
Here we define B-splines as sets of control points pi

weighted against the basis functions Bi,k(x), which
are measured at x along the curve with a degree n:

Sn(x) =
∑
i

Bi,n(x)pi.

Since we only deal with uniform cubic B-splines,
the degree n is always 3, and the distance between
the knots is the same everywhere. Knots are where
the basis functions meet, and give C2 continuity at
those points. See Figure 2 for the plot over Bi,3(x).

Figure 2: plot over some of the basis functions Bi,3,
found in: Stephen Chenney’s CS559 Lecture Notes.

Notice how Bi,3(x) is only non-zero in some short
intervals, while it evaluates to zero everywhere else.
This is a property of B-splines, called local support,
means we only need to sum the contributions of the
n− 1 neighboring basis functions & control points.

Unfortunately, there is no closed-form of Bi,n(x).
However, using Cox-de Boor’s recursive definitions:

Bi,0(x) =

{
1 if ti ≤ x ≤ ti+1

0 otherwise
,

Bi,n(x) = TiBi,n−1 + Ti+1Bi+1,n−1,

Ti+1 :=
ti+n+1 − x
ti+n+1 − ti+1

,

Ti :=
ti − x
ti+n − ti

,

gives us a way to compute Bi,n by using the knots:
ti, ti+1, ti+n, ti+n+1, and Bi,n−1, Bi+1,n−1 functions.
Finally, by assuming local support and that we can
find Bi,n by using Cox-de Boor, we get a curve Sn:

Sn(x) =

k∑
i=l

Bi,n(x)pi, l = k−n, and x ∈ [tk, tk+1],

requiring less computational power than initial one.

However, calculating Cox-de Boor repeatedly is
quite expensive, and might not be suitable in e.g.
real-time applications. Luckily, we can represent the
same operations with iterative curve subdivision. It
uses the control points P0 =

[
p0 p1 · · · p4

]
and

a subdivision matrix S; for a uniform cubic B-spline:

S =
1

8


0 0 0 0 0 0 1 4 8
0 0 0 0 1 4 6 4 0
0 0 1 4 6 4 1 0 0
0 4 6 4 1 0 0 0 0
8 4 1 0 0 0 0 0 0


ᵀ

.

Calculating the next iteration Pi = SPi−1 gives
us more control points, a smoother curve than Pi−1.
As i→∞ we’ll get closer to the analytical Sn value.
We can simply this even further by using the two
rules below, which will re-weight existing p′i, adding
new p′i between every other pairs of control points.

p′i =
1

8

{
pi−1 + 6pi + pi+1 if i isn’t new,
4pi + 4pi+1 otherwise

Another related task is the subdivision of surfaces,
which attempts to make surfaces appear smoother.
There are two well known techniques,Catmull-Clark
and Loop’s surface subdivision algorithm [3]. We’ll
present Loop’s since it uses triangles as primitives.

Simply divide each triangle into four new triangles
and then assign them weights as shown in Figure 3.
After applying Loop’s algorithm, the mesh will have
C2 continuity. Notice that our mesh is assumed to
be closed, and don’t have to deal with boundaries.

Figure 3: (a) Distribution of the weights for the new
vertex (gray) based on existing vertex data (white).
(b) Re-weighing factors for an existing vertex (gray).

β(k) =

{
3÷ 8k if k > 3

3÷ 16 when k = 3
, β(k)−1 =

1

β(k)
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3 Method and Results

After briefly going through all of this theory, we now
outline how to implement these techniques in prac-
tice. We’ll also show some images of our results and
provide relevant discussion around each technique.

3.1 Evaluating B-Spline Curves

Essentially, we want to evaluate the curve Sn(x) in
some sampling points x1, x2, ..., xs along the curve.
We could set this to e.g. xi = xi−1 + ∆, where ∆ is
a finite step forward taken along the curve. Since
we are displaying the curve on a screen, it’s natural
that ∆ relates to the amount moving us one pixel
along our curve. Hence, we evaluate for each pixel.

But we are getting a bit ahead of ourselves here,
how do we even evaluate Sn(x)? If we can do this,
then we can sample the curve and display our pixels.
We are only given a bunch of control points {pi},
which roughly follow the general “feel” of the curve.
We see in Figure 4 that the red dots on the blue
line are the control points; notice that the blue line
roughly follows the general “tendency” of the curve.

Figure 4: analytical evaluation of the cubic b-spline,
where we also use the spline local support property.
We see that in this case we are not including the
boundaries, which can be done by wrapping around.

By using the basis functions Bi,n, we calculate
how much each control points contributes to the
evaluation at x along the curve. Summing over these
gives us Sn, which makes us happy. We get Bi,n

by recursively solving Cox-de Boor. After we have
Bi,n, we can re-use and don’t need to re-calculate it
(e.g. Figure 2), we only need find which functions to
use. Finally, and most importantly, we don’t need
to take the sum over all pi and Bi,n. By assuming
local support, s = bxc gives x’s closest basis, and,
max {0, s− 1} the start, min {k− 1, s+ 2} the end.
By summing from the start up till end, we get Sn!

3.2 B-Spline Curve Subdivision
Instead of computing our cubic b-splines analyti-
cally by using Cox-de Boor’s algorithm, we can in-
stead approximate the curve Sn(x) by iteratively
subdividing the previous curve, which we call S′n(x).

Intuitively, by looking at Figure 5, we see that we
initially only have a linear interpolation between the
control points pi. Thereafter, in each iteration, we
create additional control points between the initial
ones based on the weights of the other neighboring
control points. These weights are pre-defined, and
are used to calculate the new weight of existing
control points and the weight of newly added control
points. As we have shown before, they are weighted:

p′i =
1

8

{
pi−1 + 6pi + pi+1 if i isn’t new,
4pi + 4pi+1 otherwise

.

While this will never give smooth results, since
we essentially have a piecewise flat curve in each
step, it’s usually enough to give nice results, espe-
cially if the sampling rate matches the curve’s com-
plexity. In the implementation we simply create a
new control point in-between each existing control
point, and re-weight them according to the relation
above. We apply this concept repeatedly, until we
have converged to some acceptable level of detail.
We then linearly interpolate between neighboring
control points. As can be seen below, we get rea-
sonably detailed results after the third iteration. It
somewhat even matches our other analytical result.

Figure 5: evaluation of the same curve as Figure 4,
but instead uses curve subdivision. Notice that the
first few iterations give fairly poor results, but we see
in the 3rd iteration we’re getting smoother results.

3



3.3 Loop’s Surface Subdivision
At last, we’ll describe how to implement Loop’s sub-
division scheme. First we’ll assume that the given
mesh is closed. This enables us to remove a couple
of special cases from the scheme, making it easier.
As input, it takes a mesh M, such as our faithful
cow at the left-most part of Figure 6. Our goal is
the output mesh in the right-most part of Figure 6,
which increases the polygon count of the original
cow whilst attempting to make it appear smoother.
In each iteration of the algorithm, we intend to

produce a smoother meshMi by using a previous
mesh Mi−1. We define a subdivision operator S
which will give usMi = S(Mi−1), whereM0 =M.
In S, our intention is to create more triangles and
place them in such a way that the mesh appears
smoother. We’ll use the nearby vertices to do this.

First, we produce four triangles from each of the
existing triangle in the mesh. You can see this vi-
sually in Figure 3 (a). This is done for all triangles
in the mesh. While this will create more polygons,
it will not give us smoother and smoother meshes
in each step of the iteration. To create a smoother
result, we need to move around both old and new
vertices created in this step. We can divide them
into the two rules: the vertex rule and the edge rule.
Both are detailed in Algorithm 1 and Algorithm 2:

Algorithm 1 Vertex Rules in Loop’s Algorithm
Require: some existing vertex vi positioned at ~xi.
Ensure: it gives the re-weighted position ~x′i for vi.
w ← β(|Nv

i |)
~x′i ← ~xi(1− w|Nv

i |)
for all vk ∈ Nv

i do
~x′i ← ~x′i + w~xk

end for
return ~x′i

Algorithm 2 Edge Rules for Loop’s Algorithm

Require: existing edge eij = (vi, vj) in the mesh.
Ensure: it places a vertex vn at ~xn inbetween eij .
vi ← vertex(eij)
eji ← pair(eij) ; vj ← vertex(eji)
ekj ← prev(eij) ; vk ← vertex(ekj)
eli ← next(eji) ; vl ← vertex(eli)
~xn ← 3

8 (~xi + ~xj) + 1
8 (~xk + ~xl)

return ~xn

Figure 6: applying Loop’s subdivision to our beloved
cow mesh. The leftmost image is the original mesh,
followed by one, then two, iterations of Loop’s. We
have also included the wireframe for each iteration.

Second, we’ll show when to apply these rules.
But first, perhaps an intuitive understanding is bet-
ter. When we create our sub-triangles, we’ll need a
new vertex, i.e. the grey one in Figure 3 (a). But
where do we place it? Since we want to preserve
the overall structure of the mesh, it’s natural for
it to be some weighted combination of it’s neigh-
bors. Vertices which are directly connected via an
edge should be more important, and are given the
weight 3 ÷ 8 while the other neighboring vertices
are 1÷8. This is called the edge rule, and is applied
to the vertex which is created in-between any of
the edges. Now the problem is that the old vertices
won’t be placed correctly, and will contribute to the
mesh not being smooth. We thus re-weight the mesh
by applying the vertex rule to all vertices. It takes
into account the neighborhood Nv

i , and gives them
weights by using the β-function we describe earlier.

After this, you should have a nice smooth mesh.
As can be seen in Figure 6, it gets progressively
smoother, but also increases in polygon count sub-
stantially. It’s important to note that it will always
be piecewise flat, and won’t be analytically smooth.
But that is usually enough for computer graphics...

Grading
According to the lab guidelines within the course
TNM079, I’ve implemented features for a: 3 and 4.
My aim with this assignment is a grade of scale: 4.
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